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Abstract Elevated tropospheric CO2 concentrations may
increase plant carbon fixation. In ectomycorrhizal trees, a
considerable portion of the synthesized carbohydrates can be
used to support the mutualistic fungal root partner which in
turn can benefit the tree by increased nutrient supply. In this
study, Norway spruce seedlings were inoculated with either
Piloderma croceum (medium distance “fringe” exploration
type) or Tomentellopsis submollis (medium distance “smooth”
exploration type). We studied the impact of either species
regarding fungal biomass production, seedling biomass,
nutrient status and nutrient use efficiency in rhizotrons under
ambient and twice-ambient CO2 concentrations. A subset was
amended with ammonium nitrate to prevent nitrogen imbal-
ances expected under growth promotion by elevated CO2. The
two fungal species exhibited considerably different influences
on growth, biomass allocation as well as nutrient uptake of
spruce seedlings. P. croceum increased nutrient supply and
promoted plant growth more strongly than T. submollis
despite considerably higher carbon costs. In contrast, seed-
lings with T. submollis showed higher nutrient use efficiency,
i.e. produced plant biomass per received unit of nutrient,

particularly for P, K and Mg, thereby promoting shoot growth
and reducing the root/shoot ratio. Under the given low soil
nutrient availability, P. croceum proved to be a more
favourable fungal partner for seedling development than T.
submollis. Additionally, plant internal allocation of nutrients
was differently influenced by the two ECM fungal species,
particularly evident for P in shoots and for Ca in roots.
Despite slightly increased ECM length and biomass produc-
tion, neither of the two species had increased its capacity of
nutrient uptake in proportion to the rise of CO2. This lead to
imbalances in nutritional status with reduced nutrient concen-
trations, particularly in seedlings with P. croceum. The
beneficial effect of P. croceum thus diminished, although the
nutrient status of its host plants was still above that of plants
with T. submollis.We conclude that the imbalances of nutrient
status in response to elevated CO2 at early stages of plant
development are likely to prove particularly severe at nutrient-
poor soils as the increased growth of ECM cannot cover the
enhanced nutrient demand. Hyphal length and biomass per
unit of ectomycorrhizal length as determined for the first time
for P. croceum amounted to 6.9 m cm−1 and 6.0 μg cm−1,
respectively, across all treatments.
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Introduction

The global change scenario with an expected increase of
CO2 concentrations (IPCC 2007) raises the question as to
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what extent trees may contribute to CO2 sequestration. The
stimulation of photosynthesis by elevated tropospheric CO2

furthers primary production and plant growth (e.g. Rey and
Jarvis 1997; Wang et al. 1998; Iversen 2010; McCarthy et
al. 2010). A resulting surplus of carbohydrates can be
allocated belowground and used for root growth and the
formation of mycorrhizae (Rogers et al. 1992; Janssens et
al. 1998; Pritchard et al. 2001; Norby et al. 2004). As
ectomycorrhizae (ECM) have a higher carbon (C) demand
than other mycorrhizal associations (Leake et al. 2004), this
mutualistic relationship of trees in temperate and boreal
forests is currently discussed as means for sequestration of
excessive CO2 (Alberton et al. 2005). The participating
fungi represent a strong sink of carbohydrates, particularly
through mantle formation (Bidartondo et al. 2001; Högberg
and Högberg 2002; Simard et al. 2002) and growth of
extramatrical mycelium (Rygiewicz and Andersen 1994;
Rygiewicz et al. 1997).

Many qualitative and quantitative studies on ECM under
elevated CO2 showed positive effects on both the formation
and quantity of ECM, indicating an increased availability of
photosynthates to the mycorrhizal fungi (e.g. Norby et al.
1987; O’Neill et al. 1987; Rygiewicz and Andersen 1994;
Gorissen and Kuyper 2000; Alberton et al. 2005; McCarthy
et al. 2010). Most of the studies report changes in
mycorrhizal formation (e.g. Segmüller and Rennenberg
1994; Rey and Jarvis 1997; Tingey et al. 2000), community
composition or morphotype assemblages (Godbold and
Berntson 1997; Runion et al. 1997; Parrent et al. 2006;
Parrent and Vilgalys 2007). Only a limited number of
investigations refer to biomass data and the development of
the extramatrical mycelium (Alberton et al. 2007; Alberton
and Kuyper 2009).

In comparison to ambient CO2 (aCO2), elevated CO2

concentrations increase ECM abundance and the amount of
extramatrical mycelium (Tingey et al. 2000; Fransson et al.
2005; Garcia et al. 2008; Pritchard et al. 2008), although in
some studies (Godbold et al. 2006; Parrent and Vilgalys
2007) a significant contribution of extramatrical mycelium
to soil organic matter could not be found. As ECM differ in
their amount of extramatrical mycelium (Raidl 1997; Agerer
2001; Agerer and Raidl 2004), the ECM community is
likely to change in response to continuously increasing
tropospheric CO2 concentrations (Godbold and Berntson
1997; Parrent et al. 2006; Parrent and Vilgalys 2007), possibly
promoting species with higher amounts of mycelium.

Studies on ECM regarding impacts of elevated CO2

refer to either forest soils (O’Neill et al. 1987; Godbold
and Berntson 1997; Godbold et al. 1997) or artificial
substrates (Segmüller and Rennenberg 1994; Ineichen et
al. 1995; Gorissen and Kuyper 2000). Only a few focus
on reactions of ECM associations (Godbold and Berntson
1997; Godbold et al. 1997). Rey and Jarvis (1997)

observed a stronger growth promotion of Leccinum
ECM under elevated CO2 in comparison to ECM of
Hebeloma, Laccaria or Thelephora, with Leccinum
seemingly having a higher demand for carbohydrates
than the latter three species (Agerer 2001, 2007). God-
bold and Berntson (1997) and Godbold et al. (1997)
found an evidence for a shift towards ECM with higher
amounts of extramatrical mycelium, whereas according to
Runion et al. (1997) all morphotypes responded similarly
in their abundance to elevated CO2. Increased biomass
production under eCO2 was also reported from Pisolithus
tinctorius (Mont.) E. Fisch. (Ineichen et al. 1995) and
Hebeloma crustuliniforme (Bull.) Quél. (Fransson et al.
2005). Alberton and Kuyper (2009) found an increased
hyphal length of the fungal species Hebeloma cylindro-
sporum Romagn., Laccaria bicolor (Maire) P.D. Orton
and Suillus bovinus (Pers.) Roussel in response to elevated
CO2. Most studies do not refer to the absolute biomass data
of both the mycorrhizal mantle and the extramatrical
mycelium (Anderson and Cairney 2007), even though
Colpaert and van Tichelen (1996) already pointed out that
‘probably one of the best ways of studying the effect of
environmental stress factors on mycorrhizas is to focus on the
growth of the external mycelium’.

Apart from being carbohydrate sinks, ECM are generally
accepted as the primary nutrient- and water-absorbing
organs of trees (Smith and Read 2008). Depending on the
amount, the distribution and organization of their extra-
matrical mycelia, so-called exploration types (Agerer 2001,
2007) of ECM, have been distinguished. In most species of
ECM fungi, nutrient uptake is performed by the extrama-
trical mycelium (Duddridge et al. 1980; Kammerbauer et al.
1989; Allen 1991; Read 1992) comprising a single hyphae
or strands of bundled hyphae, i.e. rhizomorphs (Agerer
1987–2008; Cairney et al. 1991).

Piloderma croceum Erikss. & Hjortst. (= Piloderma
fallax (Libert) Stalpers) and Tomentellopsis submollis
(Svrček) Hjortstam — the target organisms of the present
study — both belong to the so-called medium distance
exploration type (Agerer 2001; Agerer and Rambold 2004–
2009) but differ in the amount and organization of their
extramatrical mycelium (Agerer 1998; Agerer and Rambold
2004–2009; Brand 1991b; Haug and Pritsch 1992). P.
croceum, with dense mats of hairy rhizomorphs and
repeatedly dividing and unifying individual filaments of
uniform-loose construction (Agerer 1999), is affiliated to
the “fringe” subtype, whereas T. submollis, with less
extramatrical mycelium and rather smooth, uniform-
compact rhizomorphs (Agerer 1999), belongs to the
“smooth” subtype. It was therefore of interest how the
fungi and the mycorrhizal tree seedlings perform under
elevated CO2 with regards the biomass of both seedlings
and fungal partners and the plant nutritional status.
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At community level, soil nutrients can influence the
fungal species composition (Agerer and Göttlein 2003),
particularly under a deficiency or oversupply of nitrogen
(N) (Alexander and Fairley 1983; Nilsson 2004; Parrent et
al. 2006; Parrent and Vilgalys 2007). Nutrient supply can
also represent a limiting factor for plant growth, being
crucial when photosynthesis and carbohydrate formation
increase due to elevated CO2 concentrations (Alberton et al.
2007; Millard et al. 2007; Alberton and Kuyper 2009).
Especially, nitrogen should be available and well balanced
(Walker et al. 1995; Rygiewicz et al. 1997; Treseder 2004),
but species seem to react differently to supply (Alberton
and Kuyper 2009).

In this study, we investigated the combined effect of
elevated CO2 (eCO2) and nitrogen availability on (a) the
production of ectomycorrhizal biomass and aimed to assess
the absolute biomass for the mycorrhizal mantle of T.
submollis and P. croceum. The biomass of extramatrical
myceliumwas analysed only for the latter species. Further aims
were to (b) focus on potential relations between biomass of
extramatrical mycelium and amount of P. croceum ECM and
to (c) determine whether the two ECM species vary in their
effects on growth and nutrient supply of spruce seedlings
under aCO2 and eCO2 treatments modified by N availability.

Materials and methods

Fungal isolates and culture conditions

T. submollis (Svrček) Hjortstam Germany, Bayern,
Oberpfalz, district Regensburg, Bayerischer Wald, Raben-
zipfel south of Forstenmühle and Ziegelhaus (circa 7 km
north east of Donaustauf), 510–530 m asl, 14.03.1999, leg.
et det. S. Raidl, SR 806, ectomycorrhizae, in M (Holmgren
et al. 1990).

P. croceum J. Erikss. & Hjortstam: stock culture of SR 430:
(= Piloderma bicolor (Peck) Jülich 1969, = Piloderma
fallax (Libert) Stalpers (Stalpers 1993)), Germany, Bayern,
Oberbayern, district Kelheim, Siegenburg, in the Dürn-
bucher Forst near the Fuchsberg, approximately 1 km west
of Siegenburg, pine forest on sandy soil (Leucobryo-
Pinetum Matuszkiewicz 1962), stand of Picea abies mixed
with Pinus sylvestris, approximately 400 m asl, 08.10.1997,
SR 430, Picea ectomycorrhizae, vouchers in M (Holmgren
et al. 1990). The stock culture was kept at room
temperature in the dark and subcultured regularly.

Ectomycorrhiza synthesis

Seedlings of Norway spruce (P. abies (L.) Karst.) were
germinated according to Schubert et al. (2003). At

approximately 4 weeks after germination, the seedlings
were planted into square petri dishes (size 12×12×1 cm,
VWR, Darmstadt, Germany) used as rhizotrons. Rhizotrons
were filled to approximately 8 mm in height with 9 g (dry
matter) pure peat substrate (specification H3–H5; pH in
CaCl2, 2.5–3.5; Kölle, Munich, Germany), which had been
grinded in a knife blender and homogenized with a sieve of
2 mm mesh width (comp. Raidl 1997), and three seedlings
were planted into each dish. Following 2 months of root
formation, the seedlings were inoculated with freshly
collected ECM of T. submollis, which were carefully placed
nearby actively growing short root tips (comp. Raidl 1997).
For inoculation with P. croceum, sterile mycelium was pre-
cultured for 5 weeks on square agar petri dishes (12×12×
1 cm) on MMN medium (Marx 1969) supplemented with
1% (w/v) tetracycline. As described by Schubert et al.
(2003), a sterile nylon grid (80 μm mesh width, Draht
Center, Stuttgart, Germany) placed on the agar surface
allowed the removal of inoculum from agar plates without
any damage and containing only minimal agar residues.
The nylon net bearing the mycelium was placed top down
onto the roots of seedlings. The rhizotrons were covered
with aluminium foil to keep light off the roots and were
exposed upright to daylight at a north-facing window. After
successful mycorrhization (circa 4–6 weeks), the inoculum
net was removed and 40 rhizotrons (ten replicates for each
treatment) with a similar degree of mycorrhization and
almost equally sized seedlings were selected and randomly
distributed over the different treatments. Ten rhizotrons
with substrate but without seedlings and inoculum were
used as controls for the growth of fungal saprotrophs.

Peat was used as substrate, as both ECM species are able
to grow on spruce roots in organic layer (Brand 1991a [sub
nomine Fagirhiza rosea], Haug and Pritsch 1992 [sub
nomine Piceirhiza rosea]).

CO2/N treatments

The rhizotrons were transferred to the greenhouse of the
German Research Center for Environmental Health (http://
www.helmholtz-muenchen.de/eus/neu/green_en.php) with
standardized conditions (15/10°C day/night temperatures,
relative humidity 75%, additional irradiance for 12 h/day by
Natrium high-pressure lamps, Phillips; photosynthetic
photon flux density approx. 130 μmol m−2 s−1). 20
rhizotrons, 10 of each mycorrhizal species, as well as the
control rhizotrons were exposed to aCO2 (charcoal-filtered
ambient air at an annual mean of ∼400 ppm CO2) for
13 weeks and the other 20 rhizotrons to eCO2 (= aCO2+
300 ppm, i.e. aCO2 mixed with 300 ppm CO2). Out of each
CO2 treatment, ten rhizotrons were moistened weekly with
circa 10 ml deionised water, while ten others received a
weekly nitrogen amendment of 5 ml of ammonium nitrate
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solution (concentration, 9 mg/l) plus circa 5 ml deionised
water (aCO2+N and eCO2+N). The parallel treatment with
moderate nitrogen fertilization served to keep the nutrition-
al equilibrium between N and carbohydrates which had
been expected to be synthesized in higher amounts under
eCO2 (Iversen 2010; Lewis et al. 1994; McCarthy et al.
2010).

Harvest procedure

First, the surrounding peat substrate including the extra-
matrical mycelium was removed from each rhizotron by
carefully stripping off the extramatrical mycelium from the
ECM mantle using fine forceps and a stereoscope. The
complete, 7-month-old plants were removed from the
rhizotron and each plantlet was separated into three
fractions, with the fractions of the three seedlings of each
rhizotron combined to one sample: (1) aboveground parts
of the plant, i.e. needles and shoot—combined for receiving
sufficient material for element analysis, (2) mycorrhized
roots, recognizable as a typical yellow mantle cover in P.
croceum (Brand 1991b) and pinkish in T. submollis (Agerer
1998) and (3) roots. Needles/shoot and roots were dried
(2 days/60 ° C) and weighed, while ECM were stored in
FEA (formol–ethanol (70%)–acetic acid = 5:90:5, v/v/v).
The substrate including the extramatrical mycelium was
gently mixed in a mortar with a pestle, and a small substrate
aliquot (approximately 10%) was removed and dried for the
calculation of total substrate dry matter. The remaining
substrate was mixed further while adding water to a total
volume of 150 or 200 ml (depending on the mycelium
density), resulting in a homogeneous suspension. A 10-ml
aliquot was separated and mixed strongly in a small
mortar to break the rhizomorphs and longer hyphae into
shorter fragments. The time and intensity of this final
procedure had to be calibrated individually for every
rhizotron while the result was checked step by step by
light microscopy to test whether the hyphae had been
separated well enough.

Measurement of mantle and mycelial length and calculation
of fungal biomass

The total length of ECM was measured via image analysis
using WinRhizo (Version 3.09, Regent Instruments Inc.,
Quebec, Canada). The conversion of mycorrhizal length
into volume of mycorrhizal mantle was achieved by
assuming ECM to be perfect cylinders, with a mean
diameter of spruce ECM of 0.387±0.072 mm and an
ECM mantle thickness of 0.028±0.012 mm (based on the
data compiled by Agerer and Rambold 1998). The mantle
cross-section area comprises, according to geometrical
formulas, 26.9% of the total cross-section area of the

mycorrhizal root and therefore on average 0.0316 mm2 for
spruce ECM. Multiplication with mycorrhizal length
resulted in the total volume of the mycorrhizal mantle and
the multiplication with dry weight (see below) in biomass.

The length of extramatrical hyphae was determined by the
agar film method (after Bååth and Söderström 1979;
Kunzweiler and Kottke 1986; modified by adding 90%
lactic acid instead of agar solution and without staining with
phenol aniline blue), producing four replicate agar films for
each rhizotron. Hyphae were detected with a Nomarski
interference contrast microscope (Zeiss, Germany, magnifi-
cation ×400) and sketched on paper with the aid of a camera
lucida. After measuring the length of the drawn hyphae with
a map measuring instrument (Eschenbach, Germany) and
calibrating these values to real hyphal lengths and total
substrate aliquots, total hyphal length per gramme substrate
(dry matter) could be calculated for each rhizotron. In order
to determine the length of saprotroph hyphae, the controls
were processed accordingly. Assuming that the amount of
saprotroph hyphae was the same in both controls and
mycorrhizal rhizotrons, the mean length of saprotroph
hyphae was subtracted from the total hyphal length to obtain
the length of the extramatrical hyphae only for each
treatment. These corrected values were used for further
calculations.

Mycelial biomass was calculated using the formula
B ¼ r2p � L� D�M (Frankland et al. 1978), with B=
mycelial biomass [g dry mass], r=hyphal radius [mm], L=
hyphal length [m], D=relative hyphal density [g cm−3]
and M ¼ % dry mass ¼ 100�mycelial moisture contentð
as % of fresh weightÞ=100. r2p � L ¼ hyphal biovolume
assuming hyphaeð to be perfect cylindersÞ, with r based
on the species-specific hyphal diameter of 2.2 μm for the
extramatrical mycelium of P. croceum (deduced from
Brand 1991a and Raidl 1997). L was measured via
WinRhizo (see above). D=1.09 g cm−3 and M=21%,
following Bakken and Olson’s (1983) suggestion for the
conversion of hyphal biovolume into biomass with
D�M ¼ 0:2289 g dry mass cm�3.

Nutrient content of seedlings

Dried plant fractions were powdered with a mortar mill
(Retsch, Germany), digested with HNO3 and analysed by
ICP-AES for macro- and micro-nutrients (according to
BMVEL 2005). The total N content of plant samples was
measured by combustion using an elemental analyzer
(LECO, USA).

Data analysis and statistical treatment

The biomass and nutrient status of seedlings as well as the
length and biomass of ECM and extramatrical mycelium
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were calculated for each rhizotron. As seedlings within
rhizotrons were connected via their mycorrhizae and in
order to get a sufficient material for analysis, all three
seedlings per rhizotron were regarded as one entity, with
the rhizotron as the replication unit. The differences
between CO2/N treatments (aCO2, aCO2+N, eCO2 and
eCO2+N) and between ECM species were compared by
two-way ANOVA (n=10 rhizotrons) with the factors
‘fungal species’, ‘treatment‘ and the interaction ‘fungal
species×treatment’, in the case of mycelium (P. croceum
only) by one-way ANOVA with the factor ‘treatment’. For
multiple comparisons between species and treatments, the
Tukey’s HSD test was applied (p<0.05). Statistical analyses
were performed using JMP INTRO, Version 5.0.1a (SAS
Institute Inc., Cary, NC, USA). The data on the nutrient
contents of the spruce seedlings were compared accordingly.

The initially intended comparison of extramatrical
mycelia of both species could not be performed as the
method used for hyphal length measurements was only
applicable for P. croceum. The hyphae of T. submollis could
not be separated thoroughly enough and could not be
reliably discerned in the hemocytometer cuvettes.

Results

Seedling biomass and C/N ratios

Seedling biomass was differently influenced by the two
fungal species. Across all CO2/N treatments, root/shoot
ratio was significantly higher with P. croceum than with T.
submollis as ECM partner (Table 1), and the same trend

was found for total plant biomass (p=0.0515). Root mass
was particularly pronounced in seedlings with P. croceum.
Within CO2/N treatments, however, these species-specific
differences were significant only in roots under eCO2. In
general, elevated CO2 did not affect seedling biomass or
biomass allocation within the timeframe of the experiment,
although seedlings with P. croceum tended to increase
biomass in response to elevated CO2 (eCO2 and eCO2+N).
However, the C/N ratio in the shoot differed between
treatments, showing an increase under both eCO2 and
eCO2+N, particularly with P. croceum as fungal partner.

Ectomycorrhizae and extramatrical mycelia

The ECM length and the mantle biomass of P. croceum
were considerably higher than those of T. submollis
(Tables 2 and 3). Assuming identical thickness of the
mantles in both species, the mantle biomass was four to five
times higher in P. croceum than in T. submollis, ranging
between 2.3–3.1% and 0.6–0.9% of total seedling dry mass,
respectively (Table 3). In comparison to root biomass, the
mantle biomass of P. croceum and T. submollis represented
4.2–5.8% and 1.4–2.0% per rhizotron, respectively.

There was no significant effect of elevated CO2.
However, ECM length and mantle biomass of P. croceum
tended to be increased by about 25% under the combination
of eCO2+N, whereas in T. submollis these traits tended to
be increased under both eCO2 and eCO2+N by up to 61%.

The hyphal length and biomass ofP. croceum extramatrical
mycelium, for the first time determined in relation to ECM
length, amounted to an average of 6.9 m cm−1 ECM−1 and
6.02 μg cm−1 ECM−1, respectively. As for ECM length and

aCO2 aCO2 + N eCO2 eCO2 + N

Piloderma croceum

DM shoot [mg] 93.5±34.5 88.7±26.2 101.9±36.8 108.6±22.2

DM root [mg] 109.4±40.0 103.6±32.6 120.3±32.9* 120.8±29.6

DM total plant [mg] 202.9±74.0 192.3±56.2 222.2±68.7 229.4±49.1

Root/shoot ratio 1.2* 1.2* 1.2* 1.1*

C/N shoot 49.2±9.8 47.9±11.7 55.0±11.2 59.2±6.9

C/N root 50.4±4.9 50.9±3.8 46.8±5.3 53.0±3.1

C/N total plant 50.5±5.9 49.2±7.3 50.7±6.1 55.6±4.1

Tomentellopsis submollis

DM shoot [mg] 117±14.5 108.7±16.5 104.4±16.8 109.3±16.2

DM root [mg] 80.4±12.4 80.8±17.6 75.4±12.5 84.6±12.5

DM total plant [mg] 197.4±24.8 189.5±33.1 179.8±27.3 193.9±27.1

Root/shoot ratio 0.7 0.7 0.7 0.8

C/N shoot 54.2±6.6 47.1±4.9 47.8±8.0 52.5±4.5

C/N root 56.0±6.9 53.3±5.5 51.5±4.6 53.3±4.9

C/N total plant 55.0±6.7 50.1±4.0 49.4±6.9 52.7±3.7

Table 1 Dry matter (DM),
root–shoot ratio and C/N ratio of
total plant, shoot and root in
seedlings colonized with P.
croceum and T. submollis under
the treatments aCO2, aCO2+N,
eCO2 (aCO2+300 ppm) and
eCO2+N (aCO2+300 ppm +N).
Data represent means ± standard
deviation, n=10. Asterisks
within a column indicate
significant differences between
species (p<0.05); only the
highest value was marked
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mantle biomass, there was no effect of elevated CO2 apart
from a slight trend of increased hyphal length and biomass
under eCO2 and eCO2+N.

Nutrient concentrations in seedlings in relation to fungal
associates and CO2/N treatments

The concentrations of P, K, Ca, Mg, Cu and Zn were
significantly higher in the shoot and/or total plants of
seedlings inoculated with P. croceum as compared to those
with T. submollis (Fig. 1). The most striking fungal species

effect was observed for P concentrations which were more
than twice as high in seedlings inoculated with P. croceum.
A different pattern of plant nutrient allocation was found
for Ca, showing significantly lower concentrations in roots
with P. croceum as compared to those with T. submollis.

Significant treatment effects were only found in seed-
lings with P. croceum (exception roots in seedlings with T.
submollis for Ca), in most cases with lower nutrient
concentrations in the shoot and/or total plant in response
to eCO2 and eCO2+N, although variation was high within
treatments (Fig. 1).

aCO2 aCO2 + N eCO2 eCO2 + N

Piloderma croceum

ECM length [mm g−1 soil DM] 9.5±3.3* 7.9±3.7* 8.2±4.0* 11.9±4.8*

In percent of aCO2 [%] 100 83 86 125

Hyphal length [m g−1 soil DM] 61.8±40.3 58.0±36.4 63.0±56.1 86.8±42.7

In percent of aCO2 [%] 100 94 102 140

Hyphal length [m cm−1 ECM] 6.4±3.3 6.7±2.9 6.9±4.0 7.6±3.6

Mean [m cm−1 ECM] 6.9±3.4

Hyphal biomass [μg g−1 soil DM] 53.8±35.1 50.8±33.6 54.79±48.8 75.51±37.1

Mean [μg g−1 soil DM] 58.9±39.0

Mantle biomass [μg g−1 soil DM] 690.3±237.4* 574.3±265.5* 594.1±286.6* 860.1±349.1*

Hyphal biomass [μg cm−1 ECM] 5.57±2.83 5.81±2.52 6.04±3.44 6.62±3.17

Mean [μg cm−1 ECM] 6.02±2.93

Tomentellopsis submollis

ECM length [mm g−1 soil DM] 1.8±1.1 2.1±1.3 2.2±1.7 2.9±1.9

In percent of aCO2 [%] 100 116 123 161

Mantle biomass [μg g-1 soil DM] 130.1±80.2 150.3±91.7 160±126.5 209.8±134.7

Table 2 Length of ectomycor-
rhizae (ECM) of P. croceum and
T. submollis, as well as the
length of extramatrical
mycelium and mycelial biomass
of P. croceum per unit of ECM
length and per unit of soil dry
mass (DM) and their percentage
in comparison to the treatment
with ambient CO2 alone
(=100%). Hyphal length
adjusted by subtraction of
saprotroph hyphae (13.12 m g−1

for aCO2 and eCO2 and
14.83 m g−1 for aCO2+N and
eCO2+N, respectively). Data
represent means ± standard de-
viation, n=10. Asterisks within
column indicate significant
differences between species
(p<0.05); only the highest value
was marked

Table 3 ECM mantle biomass per unit of soil dry mass (DM), per
rhizotron and in percentage of total tree biomass and root biomass (dry
mass, DM); mycelial biomass and total ECM biomass including the
mycelium of P. croceum per rhizotron and in percentage of total tree

biomass and root biomass; proportion of mycelial biomass on total
ECM biomass of P. croceum. Data represent means ± standard
deviation, n=10. Asterisks within column indicate significant differ-
ences between species (p<0.05); only the highest value was marked

aCO2 aCO2 + N eCO2 eCO2 + N

Piloderma croceum

ECM mantle per rhizotron [mg] 5.745±2.069* 4.917±2.485* 4.851±2.099* 6.957±2.884*

In percent of seedling DM [%] 2.9±0.5* 2.6±1.1* 2.3±1.0* 3.1±1.2*

In percent of root DM [%] 5.4±1.0* 5.0±2.3* 4.2±1.9* 5.8±2.0*

Mycelium per rhizotron [mg] 0.448±0.294 0.424±0.260 0.438±0.363 0.603±0.291

In percent of seedling DM [%] 0.22±0.11 0.23±0.15 0.21±0.20 0.27±0.13

ECM mantle + mycelium per rhizotron [mg] 6.193±2.258 5.298±2.662 5.289±2.368 7.561±3.100

In percent of seedling DM [%] 3.1±0.5 2.8±1.2 2.5±1.2 3.3±1.3

In percent of root DM [%] 5.8±1.0 5.4±2.6 4.6±2.2 6.3±2.1

Proportion of mycelium on total ECM biomass [%] 7.0±3.3 7.4±2.9 7.5±4.0 8.3±3.6

Tomentellopsis submollis

ECM mantle per rhizotron [mg] 1.118±0.731 1.341±0.867 1.388±1.130 1.762±1.100

In percent of seedling DM [%] 0.6±0.3 0.7±0.4 0.8±0.6 0.9±0.5

In percent of root DM [%] 1.4±0.8 1.6±0.8 1.8±1.4 2.0±1.1
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Nutrient contents in seedlings and nutrient use efficiency
in relation to fungal partners and CO2/N treatments

As nutrient concentrations only mirror the nutrient status of
plants, total nutrient contents express the capability of plants

for total uptake in relation to biomass production. When
including seedling biomass, total nutrient accumulation per
three seedlings (rhizotron) was significantly higher for all
nutrients when seedlings were inoculated with P. croceum
compared to seedlings inoculated with T. submollis (Table 4).
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Fig. 1 Nutrient concentrations
in shoot, root and total plant of
spruce seedlings, mycorrhizal
with P. croceum (left) and T.
submollis (right). Data represent
means ± standard deviation (n=
10) per treatment: aCO2 (white
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significant differences between
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Significant CO2/N treatment effects on total nutrient
content were found only for Zn as reduced amounts under
eCO2+N compared to aCO2+N in seedlings with P.
croceum.

Regarding nutrient use efficiency, i.e. biomass produced
per unit of invested nutrient, seedlings with P. croceum
were less efficient in biomass production per invested unit
of the macro-nutrients P, K and Mg (Fig. 2). This was most
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striking for P, as seedlings with T. submollis showed a
threefold higher efficiency than seedlings with P. croceum.

Nutrient use efficiency was not affected by any of the
CO2/N treatments, except for a significantly higher effi-
ciency in P uptake by seedlings with P. croceum under
eCO2+N as compared to aCO2.

Discussion

Growth parameters and biomass of seedlings
and ectomycorrhiza

Influence of fungal partner

The considerably higher root and ECM mantle biomasses
of the seedlings inoculated with P. croceum as compared to
those of seedlings inoculated with T. submollis resulted in a
higher root/shoot ratio of seedlings with P. croceum (cf.
Tables 1 and 2). Whereas total seedling biomass with P.
croceum was on average 1.1 times higher than with T.
submollis, the proportion of ECM mantle biomass was
about four times higher with P. croceum. This suggested
that seedlings with P. croceum invested much more
carbohydrates into the root system and the fungal partner
than those with T. submollis. The difference in biomass
production and carbon allocation thus highlight a strong
species-specific fungal impact.

Similar fungal species-specific influences on plant
biomass were reported from other ECM species (Fransson
et al. 2005; Alberton et al. 2007; Alberton and Kuyper
2009). Fransson et al. (2005) reported on a higher biomass
of Scots pine seedlings inoculated with Paxillus involutus
(Batsch) Fr. compared to seedlings inoculated with H.
crustuliniforme (Bull.) Quél, while at the same time the
fungal biomass of P. involutus was lower than that of H.
crustuliniforme. This corresponds to our results with
respect to shoot mass but not with root and total seedling
mass. T. submollis, with considerably less ECM length,
furthered shoot biomass production more than P. croceum.
Both studies suggest a species-specific impact on seedling
growth and biomass allocation. Colpaert et al. (1992)
showed a negative correlation between the extent of fungal
development of several ECM fungi and the growth of host
plants under low substrate nutrient concentrations that were
similar to our peat substrate. Species with large amounts of
hyphae apparently consumed more carbohydrates than
species with sparse mycelial development, as the former
species caused a smaller plant growth (Colpaert et al.
1992). Although the mycelial biomass of T. submollis could
not be measured in the present study, visual differences
indicated a higher investment of the seedlings into the
mycelium of P. croceum than into that of T. submollis.T
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Species-specific mantle thickness likewise was not consid-
ered here. Yet it is apparent that T. submollis forms denser
mantles and less extramatrical mycelium than P. croceum
(Agerer 1998; Brand 1991b). This contrasts with the
findings of Colpaert et al. (1992) as seedling biomass was
still higher with P. croceum than with T. submollis.

The mycelium of P. croceum represented about 7.5–
11.5% of the mycorrhizal mantle biomass. This fits well to
the extrapolation made by Smith and Read (2008) for
Lactarius rufus (Scop.) Fr., likewise a medium-distance
exploration type, with an estimated production of mycor-
rhizal mantles of 730 kg ha−1 year−1 and an extramatrical
mycelium amounting to 70 kg ha−1 year−1 or 9.6% of the
mantle biomass. However, P. croceum obviously owns
much more extramatrical mycelium and its mantle is less
thick than that of L. rufus (Agerer and Rambold 2004–
2009; Agerer 2001). The figures given by Smith and Read
(2008) are therefore possibly overestimations, which is
supported by the fact that L. rufus belongs to the medium
distance “smooth” exploration type.

Hyphal length and dry mass relative to the ECM length
as evaluated for the first time with the described method
may be a useful tool for estimating mycelial length and
biomass produced by mycorrhizal systems. Averaged across
all CO2/N treatments, 6.9 m, equivalent to 6.02 μg hyphae

per centimetre ECM have been produced. Rousseau et al.
(1994) reported for the long-distance exploration type P.
tinctorius on 5 m cm−1 ECM−1 and Jones et al. (1990) for
the medium-distance exploration types Laccaria proxima
and Thelephora terrestris 1.93–3.13 m hyphae per cm
mycorrhizal root and 0.29–0.53 m, respectively, depending
on phosphorus content of the substrate. The figures
obtained for L. proxima and T. terrestris are possibly
similar to those that could be expected for T. submollis, as
all three species belong to the “smooth” subgroup within
the medium-distance exploration type, whereas P. croceum
is affiliated to the “fringe” subgroup (Agerer and Rambold
2004–2009).

However, mycelial biomass is not sufficient to judge the
carbohydrate sink on, as carbohydrates could have been
differently stored as glycogen granula within the hyphae.
Preliminary comparisons of both species have shown a
higher density of glycogen granula in the hyphae of T.
submollis in comparison to those of P. croceum (unpubl.
data, Franz 1994).

Effects of elevated CO2 and nitrogen availability

Elevated CO2 had no significant effect on biomass but
tended to promote seedling growth with P. croceum as well
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Fig. 2 Nutrient use efficiency of spruce seedlings colonized with P.
croceum (left) and T. submollis (right) expressed as plant biomass per
unit of invested nutrient of the macro-nutrients N, P, K, Ca and Mg.
Data represent means ± standard deviation (n=10) per treatment:
aCO2 (white bars), aCO2+N (light grey bars), eCO2 (dark grey bars),

eCO2+N (black bars). Different letters within grouped bars indicate
significant differences between treatments (p<0.05). Asterisks indicate
significant differences between species in the same treatment (p<0.05);
only the highest value was marked
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as ECM growth of both fungal species, particularly in
combination as eCO2+N. Similar tendencies of growth
promotion of P. croceum hyphae and biomass of P.
sylvestris seedlings in response to elevated CO2 were
reported by Alberton et al. (2007). Both eCO2 and eCO2+N
indicated stronger impacts on mantle biomass and ECM
length of T. submollis than of P. croceum (cf. Table 2).
These findings correspond to those reported by Godbold et
al. (1997) in that respect such that mycorrhizal morpho-
types forming thicker mantles are favoured under elevated
CO2.

Elevated CO2 is generally known to increase root growth,
particularly in nutrient-deficient substrates, often leading to
an increasing root/shoot ratio (e.g. Janssens et al. 1998;
Thomas et al. 1999; Tingey et al. 2000; Alberton et al.
2007). Yet the contrary has been found, too (Kasurinen et al.
1999; Rouhier and Read 1999; Johnson et al. 2006;
Handa et al. 2008), and nitrogen availability can influence
root growth under elevated CO2 (Pregitzer et al. 2000;
Wiemken et al. 2001). However, in our experiments, neither
CO2 nor N addition significantly influenced the root growth
of seedlings with P. croceum or T. submollis apart from an
indicated trend of increased root mass under elevated CO2

with P. croceum. Comparing different ECM species,
Alberton et al. (2007) found that increased root biomass
and root/shoot ratio under elevated CO2 was most promi-
nent with species exhibiting the largest external mycelium.

Godbold et al. (1997) observed a predominant increase
of mycorrhizal morphotypes forming a greater amount of
extramatrical mycelia and rhizomorphs under elevated CO2

concentrations, whereas morphotypes with less mycelium
were reduced. However, the hyphal length measured (438–
1,216 mm g−1 soil) was about 50–200 times lower than that
found in P. croceum in the present study (cf. Table 2). The
mycelial biomass in a Pinus taeda stand showed no change
in response to CO2 concentrations of 200 ppm above aCO2

(Parrent and Vilgalys 2007). Ineichen et al. (1995) found,
for P. sylvestris seedlings with P. tinctorius (Mich.: Pers.)
Coker & Couch, a threefold increase in the number of
mycorrhizal systems and a doubling of mycelial biomass
following 3 months of elevated CO2 (600 ppm) exposure.
The number of ECM and extent of mycelial systems of S.
bovinus and P. involutus contemporarily increased consid-
erably in response to twice-ambient CO2 concentrations,
being remarkably larger in P. involutus than in S. bovinus
rhizotrons (Rouhier and Read 1999). Tingey et al. (2000)
concluded that elevated CO2 causes increases in ECM
colonization on conifer roots and in the amount of produced
extramatrical mycelium. Based on PLFA quantification, an
increased amount of ECM soil hyphae under elevated CO2

was also found on deciduous Fagus sylvatica (Wiemken et
al. 2001). Conversely, Kasurinen et al. (1999) found no
evidence of increased carbon allocation to ECM under

elevated CO2 in young Scots pines at nutrient-poor forest
sites. In a study similar to the one presented here, mycelial
production and spread of H. crustuliniforme were either
increased or unchanged in response to twice-ambient CO2,
depending on the experimental approach, whereas P.
involutus showed no clear effect (Fransson et al. 2005).
The differences in mycelial spread between H. crustulini-
forme and P. involutus, particularly in greater distances
from the inoculated root system, are possibly due to the
different exploration types of the two fungal species
(Agerer 2001; Agerer and Rambold 2004–2009). The
rhizomorph-forming long-distance exploration type P.
involutus usually exhibits a less uniformly distributed
mycelium than the short-distance or medium-distance
exploration type H. crustuliniforme.

Apart from growth enhancement, the carbohydrate
storage in hyphae can also be increased in response to
elevated CO2, as shown for glycogen in the mantle of
Amanita muscaria (L.: Fr.) Hooker (Turnau et al. 2001).

When assessing the total annual carbon allocation to
ectomycorrhizae and the influence of elevated CO2, the
turnover and respiration of the ECM should also be
considered. It is known that ECM respiration, as consider-
able consumer of carbohydrates (Ek 1997; Koch et al.
2007; Rygiewicz and Andersen 1994), can amount to 30%
of soil respiration (Söderström and Read 1987). Thus,
increasing soil respiration under elevated CO2 (e.g.
Nakayama et al 1994; Schlesinger and Andrews 2000;
Zak et al. 2000; King et al. 2004) may be attributed to a
considerable part to ECM respiration. The respiration of
ECM and of their extramatrical mycelia are suggested to
amount to 60% of the carbon allocated to the fungus or
4.3% of total carbon assimilated (Rygiewicz and Andersen
1994). Based on Rygiewicz’ and Andersen’s respiration
percentage of 60%, when calculating for P. croceum
extraradical mycelial biomass, between 5.9% and 8.3% of
seedling dry matter was transferred to the fungal partner. As
seedling biomass prior to inoculation was not measured, an
estimation of carbon allocation to the fungal partner relative
to the carbon assimilation was not possible. Assuming a
mycelial carbon content of 40% to 50% (Zhu and Miller
2003, Smith and Read 2008), P. croceum should have
sequestered between 6.6 and 9.4 mg and between 5.3 and
7.6 mg carbon, respectively.

Moreover, ECM turnover plays a role when assessing C
allocation. Rygiewicz et al. (1997) calculated an average
median ECM lifetime of 139 days and Sittig (1999) of
76 days for Xerocomus chrysenteron (Bull.: St. Amans)
Quél, 83 days for Lactarius subdulcis Bull.: Fr. and 94 days
for Cenococcum geophilum Fr. Due to the relatively short
duration of our experiment (approximately 90 days), ECM
turnover might not have influenced the conclusions
regarding carbohydrate allocation to the fungal partner. As
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fine roots have lifetimes of years (Smith and Read 2008),
their turnover rates can be neglected in the present studies.

Elevated CO2 concentrations increase the trees’ demand
for N (O’Neill 1994; Walker et al. 1995; Runion et al.
1997; McCarthy et al. 2010) to be covered for regular
growth, whereas the moderate addition of nitrogen can
equalize a nitrogen imbalance caused by the increased
availability of CO2 (Pregitzer et al. 2000; Turnau et al.
2001). The lacking increase in ECM length and biomass of
P. croceum under aCO2+N and eCO2 and, conversely, a
trend of higher production under eCO2+N indicate that
fertilization balanced the increased nitrogen demand of the
seedlings under eCO2. The same trend was evident for the
extramatrical mycelium. The reaction to nitrogen may be a
consequence of the different levels of sensitivity of both
species to the availability of this nutrient (Alberton and
Kuyper 2009). Therefore, a refined approach with nitrogen
amendment adjusted to the special demands of either
species would be necessary. Such slightly controversial
reactions as found for P. croceum and T. submollis are little
known for ectomycorrhizae, although a shift in ectomycor-
rhizal community structure with reference to N availability
has been observed (Fransson et al. 2000, Parrent et al.
2006).

A synergistic effect of N amendment and eCO2 on
fungal growth was apparent only as a trend in P. croceum as
well as in T. submollis with an increase in length of 25%
and 61%, respectively. This may hint at the differing
capabilities for nitrogen uptake or nitrogen use efficiencies.
However, no difference in N use efficiency was observed
between the two fungal species (see below). According to
Arnebrant and Söderström (1992), N fertilization with
ammonium nitrate inhibited the growth of P. croceum
mycelium and, conversely, promoted the growth of another
ECM morphotype (now identified as T. submollis according
to Agerer 1998; Köljalg et al. 2001). This species-specific
N uptake capacity under different N availability indicates a
different optimum range of N between these two fungal
species, although only weakly pronounced in the present
study.

Nutrient concentrations of seedlings

Influence of fungal partner

The higher concentrations of most nutrients in seedlings
with P. croceum compared to those with T. submollis
indicated an improved nutrient status for spruce with P.
croceum. Additionally, a different plant internal nutrient
allocation under the influence of these two fungal species
was observed.

The striking differences in almost all element concen-
trations, particularly in phosphate accumulation, were most

likely due to the fact that Piloderma produced 3.7–5.3
times greater ECM lengths, respectively mantle biomass
(cf. Tables 2 and 3), than Tomentellopsis, leaving differ-
ences in extramatrical mycelium unconsidered. Therefore,
with respect to the low nutrient availability of the peat
substrate, seedlings with P. croceum had better access to
nutrients. A prerequisite for this was to enhance carbon
investment into the roots, ECM and extramatrical mycelia
for an appropriate nutrient uptake, with the consequence of
a reduced shoot growth. In contrast, seedlings were less
effective in nutrient uptake when growing with T. sub-
mollis. This resulted in a slight, though not significant,
reduction in total seedling biomass in comparison to
seedlings with P. croceum. Low nutrient availability,
particularly N and P, usually promotes root growth (e.g.
Chapin 1980; Ericsson 1995; Marschner et al 1996).
Instead, the increased biomass allocation to the shoot in
seedlings with T. submollis may also be interpreted as
investment into assimilation organs for increment in
photosynthesis products and following compensation of
restricted root growth under the influence of this fungal
species.

The contrasting Ca concentration in roots might be
explained by differences in crystal formation. P. croceum
forms high amounts of calcium oxalate crystals (Arocena et
al. 2001) on its hyphal surfaces, both of mantle surface as
well as of the extramatrical mycelium (Brand 1991a, b),
which is lacking in T. submollis (Agerer 1998; Köljalg et al.
2001). As the extramatrical mycelium was stripped off and
the ECM were removed from the roots, most of the Ca
taken up by P. croceum is deposited on hyphae in the peat
or on the ECM separated for length measurements and
could apparently not be transferred to the roots to be
measured. As shoot Ca concentrations of seedlings with P.
croceum are significantly higher than those of T. submollis,
in spite of the possibly massive use for crystal formation by
P. croceum, a great deal of Ca has likely been sequestered
in the ECM-bearing roots of seedlings with T. submollis
and not delivered to the shoots.

Effects of elevated CO2 and nitrogen availability

Elevated CO2 and particularly the combination eCO2+N
resulted in reduced concentrations of most nutrients in
seedlings with P. croceum. This is consistent with findings
on P. croceum and other ECM species as reported by
Alberton et al. (2007) for nitrogen and phosphorus. As
simultaneously the biomass of seedlings and ECM was
rather promoted (see above), elevated CO2 seemed to affect
the nutrient balance of seedlings with P. croceum. In
contrast, treatment effects on nutrient concentrations were
lacking in seedlings with T. submollis, with the exception of
Ca in the roots. While ECM biomass of T. submollis also
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tended to be increased in response to elevated CO2, Ca
concentration in roots decreased. Thus, for both ECM
species, the capacity in nutrient acquisition obviously could
not be increased by elevated CO2, possibly due to the
insufficient availability of nutrients in the peat substrate.

The lacking difference between the treatments with and
without nitrogen addition might indicate that, in our system,
the N content of the substrate was, in spite of nitrogen
amendment in eCO2+N, still too low to reach an equilib-
rium between C and N. Seedlings with T. submollis
apparently acquired enough nitrogen, keeping the C/N ratio
rather constant throughout all treatments. The low P content
and P/N ratios (approx. 0.05–0.06) in the shoot of spruce
seedlings synthesized with T. submollis indicate a very poor
P supply. This suggests that these seedlings probably could
not respond to eCO2 due to their deficiency in phosphate
(see Conroy et al. 1990; Johnson et al. 1995). Elevated CO2

caused P. taeda seedlings with P. tinctorius to increase P
uptake, at least under P limitation (Lewis and Strain 1996).
This is possibly dependent on increased phosphatase
activities (Moorhead and Linkins 1997). Our studies,
however, showed a decrease in shoot P concentrations
under eCO2. This might be a dilution effect as discussed for
N, too, with less P available than would be necessary for an
enhanced seedling growth under eCO2. This is also evident
for other macronutrient concentrations (S, K, Ca, Mg; cf.
Fig. 1). The applied substrate might influence the outcomes
as substrate type and nutrient availability play an important
role for the growth of ectomycorrhizal plants under elevated
CO2 concentrations (Mousseau and Saugier 1992), al-
though there seem to be exceptions (Johnson et al. 2006).

Norby et al. (1986) is, to our knowledge, the only
publication that studied the uptake of a diversity of macro-
and micronutrients by ECM under the influence of elevated
CO2. In Quercus alba seedlings grown in nutrient-deficient
natural soil, they found no increase in total uptake of N, S
and B under elevated CO2, resulting in lower tissue
concentrations. In contrast, P and K uptake increased in
proportion to growth, therefore leaving tissue concentra-
tions unchanged. The authors explained this by the
proliferation of fine roots and associated ECM and
phosphate dissolution stimulating rhizosphere bacteria.

Impact of ECM fungi on nutrient use efficiency

Influence of fungal partners

Conversely to the growth benefits and higher nutrient supply
with P. croceum, when considering the biomass production
per unit of acquired nutrient, seedlings with P. croceum
proved to be less efficient than those with T. submollis. This
was most pronounced for P, for which the produced biomass
per unit P was about three times higher with T. submollis

than with P. croceum. This clearly shows a species-specific
influence of the fungus not only on plant nutrient supply but
also on the usage of the nutrients for biomass production.
Jones et al. (1991) found higher nutrient use efficiency for P
of Salix cuttings with T. terrestris Ehrh. in comparison with
that of non-mycorrhizal cuttings.

K is important for the transport of short-chained
polyphosphate (Bücking and Heyser 1999). Therefore, it
is not surprising that the significantly higher P use
efficiency in T. submollis-inoculated seedlings is associated
also with significantly higher K and Mg use efficiency
(both have relatively high plant internal mobility), although
the concentrations of these elements (P, Ca, K, Mg) were all
significantly higher in seedlings with P. croceum. This is in
accordance with the findings of Jentschke et al. (2001) on
the interdependence of K, Mg and N fluxes with long-
distance P translocation in mycorrhizal mycelium of P.
involutus of pine seedlings. Different impacts on K fluxes
in roots synthesized with the short/medium-distance explo-
ration type H. cylindrosporum and the long-distance
exploration type Rhizopogon roseolus (Corda) Th. Fr. in
comparison to non-mycorrhizal roots have been found by
Plassard et al. (2002). H. cylindrosporum did not positively
influence the K flux, whereas R. roseolus increased it
considerably.

Effects of elevated CO2 and nitrogen availability

CO2/N treatment effects were observed only in P use
efficiency of seedlings with P. croceum (cf. Fig. 2). The
increase under eCO2+N as compared to aCO2 suggested an
increased energy supply for uptake under elevated CO2.
The weak response of seedlings with T. submollis is
reflected by the unchanged seedling biomass. Under both
eCO2 treatments, the increased ECM growth of this fungal
species did not promote a better nutrient supply. In contrast,
Alberton et al. (2007) reported on significantly reduced N
uptake per unit of root mass in response to elevated CO2 for
P. croceum and other ECM species indicating N immobi-
lization by the mycorrhizal fungi.

High nutrient use efficiency may be due to the fact that
the plant can afford higher biomass production per unit of
nutrient. On the other hand, nutrient-deficient plants are
forced to enhance their efficiency simply to survive. So, a
high nutrient use efficiency may indicate either beneficial
or detrimental conditions As shown by the very low P
concentrations for seedlings with T. submollis in combina-
tion with their lower biomass, in our case, the higher P use
efficiency seems to be an adaptation to cope with
conditions of deficiency. In contrast, the higher P use
efficiency for seedlings with P. croceum under elevated
CO2 seems to be a beneficial effect, indicated by the
slightly higher biomass production under these conditions.
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Conclusions

The two fungal species used in the present study revealed
considerably different influences on growth, biomass alloca-
tion as well as nutrient uptake of spruce seedlings. Under the
low soil nutrient availability of the peat substrate used here, P.
croceum promoted seedlings better than T. submollis did by
increased nutrient uptake. At the expense of higher carbon
investment into roots and the fungal partner, this resulted in
an increased root/shoot ratio and a higher total biomass of
seedlings with P. croceum. In contrast, the seedlings profited
less from the association with T. submollis in terms of plant
growth and nutrient status. However, shoot growth was
favoured in this species which may be of advantage in
above-ground competition. At considerably lower carbon
costs for roots and ECM, nutrient use efficiency was much
higher with T. submollis than with P. croceum, particularly
for P but also for K and Mg. As soil nutrient availability was
low, the increased biomass allocation to the shoot in
seedlings with T. submollis in combination with higher
nutrient use efficiency may indicate a response to the low
nutrient transfer from the fungi to the plant.

Under elevated CO2 treatments, particularly in the combi-
nation eCO2+N, seedling biomass was slightly increased in
association with P. croceum but not with T. submollis.
Although ECM biomass and length tended to be increased
in both species in response to eCO2 and particularly to
eCO2+N, nutrient uptake by ECM was relatively decreased.
The beneficial effect of P. croceum diminished under these
treatments, although nutrient status was still above that of
plants with T. submollis. Thus, in the long term, increased
plant growth under elevated CO2 can be accompanied by
imbalances in nutritional status as the capacity in nutrient
uptake by ECM is not proportionally increased. These effects
may likely be more severe in nutrient-poor soils.
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